Noise-induced switching near a depth two heteroclinic network and an application to Boussinesq convection.

نویسندگان

  • Peter Ashwin
  • Olga Podvigina
چکیده

We investigate the robust heteroclinic dynamics arising in a system of ordinary differential equations in R(4) with symmetry [Formula in text]. This system arises from the normal form reduction of a 1: squate root of 2 mode interaction for Boussinesq convection. We investigate the structure of a particular robust heteroclinic attractor with "depth two connections" from equilibria to subcycles as well as connections between equilibria. The "subcycle" is not asymptotically stable, due to nearby trajectories undertaking an "excursion," but it is a Milnor attractor, meaning that a positive measure set of nearby initial conditions converges to the subcycle. We investigate the dynamics in the presence of noise and find a number of interesting properties. We confirm that typical trajectories wind around the subcycle with very occasional excursions near a depth two connection. The frequency of excursions depends on noise intensity in a subtle manner; in particular, for anisotropic noise, the depth two connection may be visited much more often than for isotropic noise, and more generally the long term statistics of the system depends not only on the noise strength but also on the anisotropy of the noise. Similar properties are confirmed in simulations of Boussinesq convection for parameters giving an attractor with depth two connections.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Noisy heteroclinic networks

The influence of small noise on the dynamics of heteroclinic networks is studied, with a particular focus on noise-induced switching between cycles in the network. Three different types of switching are found, depending on the details of the underlying deterministic dynamics: random switching between the heteroclinic cycles determined by the linear dynamics near one of the saddle points, noise ...

متن کامل

Robust heteroclinic Cycles in Two-Dimensional Rayleigh-bÉnard convection without Boussinesq Symmetry

The onset of convection in systems that are heated via current dissipation in the lower boundary or that lose heat from the top boundary via Newton’s law of cooling is formulated as a bifurcation problem. The Rayleigh number as usually defined is shown to be inappropriate as a bifurcation parameter since the temperature difference across the layer depends on the amplitude of convection and henc...

متن کامل

Switching in Heteroclinic Networks

We study the dynamics near heteroclinic networks for which all eigenvalues of the linearization at the equilibria are real. A common connection and an assumption on the geometry of its incoming and outgoing directions exclude even the weakest forms of switching (i.e. along this connection). The form of the global transition maps, and thus the type of the heteroclinic cycle, plays a crucial role...

متن کامل

Heteroclinic Networks in Coupled Cell Systems

We give an intrinsic definition of a heteroclinic network as a flow invariant set that is indecomposable but not recurrent. Our definition covers many previously discussed examples of heteroclinic behavior. In addition, it provides a natural framework for discussing cycles between invariant sets more complicated than equilibria or limit cycles. We allow for cycles that connect chaotic sets (cyc...

متن کامل

Noise-constrained switching times for heteroclinic computing.

Heteroclinic computing offers a novel paradigm for universal computation by collective system dynamics. In such a paradigm, input signals are encoded as complex periodic orbits approaching specific sequences of saddle states. Without inputs, the relevant states together with the heteroclinic connections between them form a network of states-the heteroclinic network. Systems of pulse-coupled osc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Chaos

دوره 20 2  شماره 

صفحات  -

تاریخ انتشار 2010